Optimal excitation of three-dimensional perturbations in viscous constant shear flow

Abstract
The three-dimensional perturbations to viscous constant shear flow that increase maximally in energy over a chosen time interval are obtained by optimizing over the complete set of analytic solutions. These optimal perturbations are intrinsically three dimensional, of restricted morphology, and exhibit large energy growth on the advective time scale, despite the absence of exponential normal modal instability in constant shear flow. The optimal structures can be interpreted as combinations of two fundamental types of motion associated with two distinguishable growth mechanisms: streamwise vortices growing by advection of mean streamwise velocity to form streamwise streaks, and upstream tilting waves growing by the down gradient Reynolds stress mechanism of two-dimensional shear instability. The optimal excitation over a chosen interval of time comprises a combination of these two mechanisms, characteristically giving rise to tilted roll vortices with greatly amplified perturbation energy. It is suggested that these disturbances provide the initial growth leading to transition to turbulence, in addition to providing an explanation for coherent structures in a wide variety of turbulent shear flows.

This publication has 29 references indexed in Scilit: