On the Frequency Evolution of X-ray Brightness Oscillations During Thermonuclear X-ray Bursts: Evidence for Coherent Oscillations
Preprint
- 3 March 1999
Abstract
We investigate the time dependence of the frequency of X-ray brightness oscillations during thermonuclear bursts from several neutron star low mass X-ray binaries. We find that the oscillation frequencies in the cooling tails of X-ray bursts from 4U 1702-429 and 4U 1728-34 are well described by an exponential "chirp" model. With this model we demonstrate that the pulse trains in the cooling tails of many bursts are highly phase coherent, having oscillation quality factors as high as Q ~ 4000. We use this model of the frequency evolution to search sensitively for significant power at the harmonics and first sub-harmonic of the 330 and 363 Hz signals in bursts from 4U 1702-429 and 4U 1728-34, respectively, but find not evidence for significant power at any harmonic or the sub-harmonic. We argue that the high coherence favors stellar rotation as the source of the oscillations. We briefly discuss the frequency evolution in terms of rotational motion of an angular momentum conserving thermonuclear shell. we discuss how the limits on harmonic content can be used to infer properties of the neutron star.Keywords
All Related Versions
- Version 1, 1999-03-03, ArXiv
- Published version: The Astrophysical Journal, 516 (2), L81.
This publication has 0 references indexed in Scilit: