A Model for the Vertial Circulation of the Baltic Deep Water
Open Access
- 1 October 1987
- journal article
- Published by American Meteorological Society in Journal of Physical Oceanography
- Vol. 17 (10) , 1772-1785
- https://doi.org/10.1175/1520-0485(1987)017<1772:amftvc>2.0.co;2
Abstract
The time-dependent vertical circulation of the Baltic Proper is modeled using a horizontally integrated model of high vertical resolution. A seasonal pycnocline model computes the properties of the mixed layer. Below this an advection-vertical diffusion model computes the evolution of the salinity and temperature fields. A simple model for an entraining dense bottom current—which carries the intruding seawater and drives the vertical advection in the basin—is developed and used. In the derivation of entrainment velocity we it is shown that E(=we/u, where u is the speed of the bottom current) may be expressed in the well-known empirical constants m0 and Cd. The hypsographic features of the Baltic are accounted for in the model. The model is forced using realistic meteorological and hydrological time series. The inflow of dense seawater to the Baltic, with large fluctuations in flow rate and salinity, is realistically described and constitutes the upstream boundary condition for the bottom current.... Abstract The time-dependent vertical circulation of the Baltic Proper is modeled using a horizontally integrated model of high vertical resolution. A seasonal pycnocline model computes the properties of the mixed layer. Below this an advection-vertical diffusion model computes the evolution of the salinity and temperature fields. A simple model for an entraining dense bottom current—which carries the intruding seawater and drives the vertical advection in the basin—is developed and used. In the derivation of entrainment velocity we it is shown that E(=we/u, where u is the speed of the bottom current) may be expressed in the well-known empirical constants m0 and Cd. The hypsographic features of the Baltic are accounted for in the model. The model is forced using realistic meteorological and hydrological time series. The inflow of dense seawater to the Baltic, with large fluctuations in flow rate and salinity, is realistically described and constitutes the upstream boundary condition for the bottom current....Keywords
This publication has 0 references indexed in Scilit: