Integration of absolute ventricular fibrillation voltage correlates with successful defibrillation
- 1 January 1994
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 41 (8) , 782-791
- https://doi.org/10.1109/10.310093
Abstract
Previous work has suggested that at higher absolute ventricular fibrillation voltages (AVFV), the heart is more amenable to defibrillation. This study investigated in a canine model whether voltage integration of the AVFV is associated with the defibrillation success rate. The moving-average filter was used to process the ventricular fibrillation (VF) waveform recorded from Lead II of the electrocardiogram (ECG). In seven animals, defibrillation trials were analyzed using a dc shock (DCS) successful approximately 50% of the time when delivered randomly. For each of a total of 84 DCS (40% successes, 60% failures), the fibrillation waveform just prior to DCS was analyzed. The integration of the AVFV waveform was performed over various sample sizes including 1, 4, 8, 16, 64, and 128 ms, as well as the time equal to the mean VF cycle length. The results suggest that dc shocks delivered at instants of higher values of integrated AVFV over the various window sizes are associated with successful defibrillation. Window sizes less than 16 ms appeared to offer the best discrimination. The integration of AVFV over the entire VF cycle length was significantly higher for successful rather than unsuccessful DCS. This interesting observation is consistent with the clinical observation that "coarse" VF (high AVFV) is easier to defibrillate than "fine" VF (low AVFV). The use of voltage integration of AVFV may have potential implications in the improvement of defibrillation success in implantable devices.Keywords
This publication has 42 references indexed in Scilit:
- Superiority of biphasic shocks in the defibrillation of dogs by epicardial patches and catheter electrodesAmerican Heart Journal, 1989
- Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium.Journal of Clinical Investigation, 1989
- Improved low energy defibrillation efficacy in man with the use of a biphasic truncated exponential waveformAmerican Heart Journal, 1989
- The relationship between successful defibrillation and delivered energy in open-chest dogs: Reappraisal of the “defibrillation threshold” conceptAmerican Heart Journal, 1987
- Determinants of ventricular defibrillation in adults.Circulation, 1979
- Factors influencing the success of ventricular defibrillation in man.Circulation, 1979
- Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardiumThe American Journal of Cardiology, 1975
- Myocardial Necrosis from Direct Current CountershockCirculation, 1974
- Patterns of Ventricular Activity During Catheter DefibrillationCirculation, 1974
- A computer model of atrial fibrillationPublished by Elsevier ,1964