Resistance to axonal degeneration after nerve compression in experimental diabetes.
- 1 March 1989
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 86 (6) , 2103-2106
- https://doi.org/10.1073/pnas.86.6.2103
Abstract
To determine the effect of diabetes on the development of axonal degeneration after acute nerve compression, the mobilized peroneal nerves of rats with streptozotocin-induced diabetes and of control rats were compressed at 150 mmHg (1 mmHg = 133 Pa) for 30 min by using specially devised cuffs. At three intervals after compression.sbd.3 days, rats diabetic for 31 wk; 14 days, diabetic for 6 wk; and 24 days, diabetic for 31 wk.sbd.groups of nerves were studied to assess numbers and sizes of fibres above, at, and below the cuff and to assess frequency of fiber degeneration in teased fibers from nerve distal to the cuff. Teased fibers with pathologic abnormalities were more frequent in nerves from controls than in nerves from diabetic rats in all threee rats in all three groups but the difference was statistically significant only at 3 and 14 days after compression. The lack of significant differences at 24 days may be explained by higher rates of disappearance of degenerating products and of fiber regenerateion at 24 than at 3 and 14 days. This study provides evidence that in addition to delaying the reported functional deficit of vibratory detection threshold and conduction block during nerve compression, diabetes also may patially prevent axonal injury. Low nerve myo-inositol concentration did not predispose diabetic nerve to acute compression injury. If these results also apply to human diabetes and if repeated acute compression is involved in the genesis of fiber degeneration in entrapment, then a higher frequency of entrapment neuropathy among diabetics might be due to mechanisms other than susceptibility of fibers to acute compression.sbd.e.g., possibly to greater constriction of nerve due to pathologic alterations of the carpal ligament.This publication has 19 references indexed in Scilit:
- Nerve Glucose, Fructose, Sorbitol,myo-Inositol, and Fiber Degeneration and Regeneration in Diabetic NeuropathyNew England Journal of Medicine, 1988
- Nonenzymatic Glycosylation and the Pathogenesis of Diabetic ComplicationsAnnals of Internal Medicine, 1984
- Nerve compression injury and increased endoneurial fluid pressure: a "miniature compartment syndrome".Journal of Neurology, Neurosurgery & Psychiatry, 1983
- Percussive injury to peripheral nerve in ratsJournal of Neurosurgery, 1979
- Axonal dwindling in early experimental diabetes. I. A study of cross sectioned nervesDiabetologia, 1976
- Experimental Progressive Compression Neuropathy in the RabbitArchives of Neurology, 1971
- The effects of hypoxia on the excitability of the isolated peripheral nerves of alloxan-diabetic rats.Journal of Neurology, Neurosurgery & Psychiatry, 1969
- Experimental Hypertrophic NeuropathyArchives of Neurology, 1969
- Influence of Diabetic Status on Vibratory Perception during IschaemiaActa Medica Scandinavica, 1961
- Vibratory Perception in Diabetics during Arrested Blood Flow to the LimbActa Medica Scandinavica, 1959