Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas

Abstract
Surface dehydroxylation of amorphous and crystalline silicas (quartz dust) has been investigated from the standpoint of the development of hydrophobicity upon thermal treatment. Hydrophobicity occurs when only siloxane bridges and isolated silanols (IR band at ca. 3750 cm–1) are present and is monitored by an enthalpy of adsorption of water lower than the latent heat of liquefaction (44 kJ mol–1). This calorimetric method allows the evaluation of the extent of hydrophilic and hydrophobic patches when both are present at the surface. All silicas develop hydrophobicity upon thermal treatment in vacuo, but quartz is much less easily dehydroxylated than amorphous materials. It is still mainly hydrophilic after outgassing at 1073 K, whereas pyrogenic silicas (Aerosil) become hydrophobic upon outgassing at T < 673 K. Quartz is also characterized by a few very reactive sites (q 90 kJ mol–1), absent on the amorphous specimens. Both these facts might be related to the specific quartz pathogenicity. Rehydroxylation at room temperature of dehydroxylated silicas occurs to a very limited extent. Hydrophilic patches exhibit a marked heterogeneity towards water with an enthalpy of adsorption decreasing from 90 to 44 kJ mol–1. The enthalpy of adsorption approaches 44 kJ mol–1 corresponding to the addition of multilayers of adsorbed water.

This publication has 0 references indexed in Scilit: