EDTH - A DIFFERENTIAL OPERATOR ON THE SPHERE

Abstract
Introduction. In (9) Newman and Penrose introduced a differential operator which they denoted ð, the phonetic symbol edth. This operator acts on spin weighted, or spin and conformally weighted functions on the two-sphere. It turns out to be very useful in the theory of relativity via the isomorphism of the conformal group of the sphere and the proper inhomogeneous Lorentz group (11, 4). In particular, it can be viewed (2) as an angular momentum lowering operator for a suitable representation of SO(3) and can be used to investigate the representations of the Lorentz group (4). More recently, edth has appeared in the good cut equation describing Newman's ℋ-space for an asymptotically flat space-time (10). This development is closely related to Penrose's theory of twistors and, in particular, to asymptotic twistors (14).

This publication has 13 references indexed in Scilit: