Fault overlap zones within developing normal fault systems

Abstract
Overlap zones between normal faults have been studied using a variety of 2D and 3D seismic reflection datasets. The overlaps are of two types, (i) relay zones in which displacement is transferred between the overlapping faults and (ii) non-relay overlaps in which displacement is not transferred. Overlap zones are continually formed and destroyed during the growth of a fault system. Overlap zones are formed either by interference between initially isolated faults or as a result of bifurcation of a single fault. The mode of overlap formation is reflected in the 3D geometry of the overlapping faults which may be either unconnected or linked at a branch-line or branch-point. Seismic reflection data from regions of growth faulting, and also sandbox analogue data, allow analysis of fault development through time. Reconstructions of the displacement distribution on some faults with sharp bends and associated hanging-wall splays, show that the bends originated as overlap zones which were later breached to form through-going faults. Depending on the displacements of relay-bounding faults, the effect of relay zones on hydrocarbon reservoirs may be to (a) provide structural closure, (b) form gaps in otherwise sealing faults or (c) increase reservoir connectivity.