Abstract
An analysis of hydrodynamic squeeze films is presented for the case of an electrically conducting fluid in the presence of a magnetic field. Circular plates and infinitely long rectangular plates are considered with a uniformly applied magnetic field. The relationships between fluid-film thickness and time are determined analytically and compared with the ordinary hydrostatic squeeze films. It is shown that the application of a magnetic field improves the squeeze-film action.

This publication has 0 references indexed in Scilit: