A model for delayed emission in a very-high energy gamma-ray flare in Markarian 501
Abstract
Recently the MAGIC collaboration reported evidence for a delay in the arrival times of photons of different energies during a gamma-ray flare from the blazar Markarian 501 on 2005 July 9. We aim at describing the observed delayed high-energy emission. We apply a homogeneous synchrotron self-Compton (SSC) model under the assumption that the blob containing relativistic electrons was observed in its acceleration phase. Such a modified SSC model predicts the appearance of the gamma-ray flare first at lower energies and subsequently at higher energies. Moreover, we argue that the time delay between the flare observed at different energies depends on the gamma-ray energy. Based on the reported time delay of approx. 240 s between the flare observed at 190 GeV and 2.7 TeV, we predict it should be on the order of 1 h if it was observed between 10 GeV and 100 GeV. Such delay time scales can be tested in the future by simultaneous observations of flares with GLAST and Cherenkov telescopes.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: