Abstract
This part of the paper introduces some possible implementations of Self-Scaling Variable Metric algorithms based on the theory presented in Part I. These implementations are analyzed theoretically and discussed qualitatively. A special class of SSVM algorithms is introduced, which has the additional property of being invariant under scaling of the objective function or of the variables. Experimental results are provided for a particular case of this class. This case has been tested in comparison to the DFP algorithm on a variety of functions with up to 50 variables. The results indicate that the new method has substantial advantage for functions with a large number of variables.

This publication has 0 references indexed in Scilit: