Ultrastructural aspects of spore germination and outgrowth in Clostridium sporogenes

Abstract
The process by which dormant spores of Clostridium sporogenes are transformed into vegetative cells has been studied in thin sections with the electron microscope. The resting spore appears very similar to that of other Bacillaceae for it possesses a rather featureless core which is surrounded by a core membrane, cortex, and spore coat(s); beyond lies a sac-like exosporium. At an early stage in germination the core becomes differentiated into peripheral areas of nuclear material and a ribosome-packed cytoplasm; a germ cell wall develops beyond the core membrane. The later stages of germination coincide with the beginning of outgrowth: the cortex disintegrates into a sponge-like mass of fibrils, and the young cell grows while still retained within the unbroken spore coats. The young cell now has a fibrillar nucleoplasm, a ribosome-rich cytoplasm, an occasional mesosome, a plasma membrane, and a relatively thick cell wall. Subsequently, the cortex vanishes completely, and the new vegetative cell elongates and finally emerges terminally through the spore coats and the exosporium. The exosporium of C. sporogenes consists of two layers: a thick inner one which is laminated, and a thin outer one possessing a fringe of hair-like projections.

This publication has 0 references indexed in Scilit: