Cathepsin L activity controls adipogenesis and glucose tolerance

Abstract
Cysteine proteases play an important part in human pathobiology1. This report shows the participation of cathepsin L (CatL) in adipogenesis and glucose intolerance. In vitro studies demonstrate the role of CatL in the degradation of the matrix protein fibronectin, insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R), essential molecules for adipogenesis and glucose metabolism2,3,4,5. CatL inhibition leads to the reduction of human and murine pre-adipocyte adipogenesis or lipid accumulation, protection of fibronectin from degradation, accumulation of IR and IGF-1R β-subunits, and an increase in glucose uptake. CatL-deficient mice are lean and have reduced levels of serum glucose and insulin but increased levels of muscle IR β-subunits, fibronectin and glucose transporter (Glut)-4, although food/water intake and energy expenditure of these mice are no less than their wild-type littermates. Importantly, the pharmacological inhibition of CatL also demonstrates reduced body weight gain and serum insulin levels, and increased glucose tolerance, probably due to increased levels of muscle IR β-subunits, fibronectin and Glut-4 in both diet-induced obese mice and ob/ob mice. Increased levels of CatL in obese and diabetic patients suggest that this protease is a novel target for these metabolic disorders.