Abstract
Arg-210 of the a subunit of the Escherichia coli F0F1-ATPase has been proposed previously as a component of the proton pore. A mutant in which lysine was substituted for Arg-210 was generated and was found to be unable to translocate protons. A plasmid carrying this mutation, along with wild-type genes encoding the c and b subunits, was unusual in that it failed to complement a chromosomal c-subunit mutation on succinate minimal medium. Three revertants on succinate minimal medium contained plasmids that showed complementation with chromosomal c-subunit but not with a-subunit mutations. One of these had a deletion in the a subunit. The other two were point mutations, resulting in the substitution of aspartic acid by Gly-53 and of arginine for Leu-211. The Gly-53 to aspartic acid change implied that Gly-53 and Arg-210 are normally in close proximity. To test this idea further, a series of mutants in which aspartic acid was placed in helix I at positions ranging from 42 to 57 was generated. Full complementation was regained only when the aspartic acid residue was present on the same side of a putative helix as Gly-53 over a span of three turns of the alpha-helix. These results and others suggest modifications of a previously proposed model for the transmembrane helices of the F0 portion of the F0F1-ATPase. The implications of these modifications for the mechanism of proton translocation are discussed.

This publication has 26 references indexed in Scilit: