Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens mill

Abstract
In the succulent leaves of Aloe arborescens Mill diurnal oscillations of the malic acid content, being indicative of Crassulacean Acid Metabolism (CAM), were exhibited only by the green mesophyll. In contrast, the malic acid level of the central chloroplast-free water-storing tissue remained constant throughout the day-night cycle. Apart from malate, the green tissue contained high amounts of isocitrat which was lacking in the water tissue. There was no significant transfer from the green mesophyll to the water tissue of 14C fixed originally via dark 14CO2 fixation in the mesophyll. Both isolated mesophyll and water tissue were capable of dark CO2 fixation yielding mainly malate as the first stable product. Both tissues have phosphoenolpyruvate carboxylase. However, the enzymes derived from the both sources could be distinguished by their molecular weights and by their kinetic properties, suggesting different phosphoenolpyruvate carboxylase proteins. The conclusion drawn from the experiments is that in a. arborescens the CAM cycle proceeds exclusively in the green mesophyll and that the water tissue, though capable of malate synthesis via β-carboxylation of phosphoenolpyruvate, behaves as an independent metabolic system where CAM is lacking. This view is supported by the finding that the cell walls bordering the green mesophyll from the water tissue lack plasmodesmata, hence conveniant pathways of metabolite transport.