Abstract
Although composed simply of glucose polymers, the starch granule is a complex, semicrystalline structure. Much of this complexity arises from the fact that the two primary enzymes of synthesis−starch synthase and starch-branching enzyme−exist as multiple isoforms. Each form has distinct properties and plays a unique role in the synthesis of the two starch polymers, amylose and amylopectin. The debranching enzyme isoamylase also has a profound influence on the synthesis of amylopectin. Despite much speculation, no acceptable model to explain the interactions of all of these enzymes to produce amylose and amylopectin has thus far emerged. The organization of newly synthesized amylopectin to form the semicrystalline matrix of the granule appears to be a physical process, implying the existence of complex interactions between biological and physical processes at the surface of the growing granule. The synthesis of the amylose component occurs within the amylopectin matrix.