Abstract
Prior absorption of normal human serum (NHS) or C2-deficient human serum (C2D) with zymosan at 0 degrees C results in diminished consumption of C3 and factor B during subsequent incubation of the sera in Mg-EGTA buffer with zymosan at 37 degrees C for 30 min. An acid eluate from the zymosan restores the defect of absorbed NHS and C2D, and also enhances C3 and factor B utilization in hypogammaglobulinemic serum (H gamma S) in a dose-dependent fashion. The activity is specific in that the eluate from zymosan fails to enhance C3 and B depletion in H gamma S or absorbed NHS by lipopolysaccharide or Sepharose. The active component of th zymosan eluate emerges from both Sepharose 4B and Sephacryl S-200 in the region of molecules with m.w. of 150,000. Absorption with protein A-Sepharose removes the activity, demonstrating that it is IgG. Digestion of the IgG with pepsin fails to diminish activity, indicating that the Fc region is not required for activity; reduction to monovalent Fab' fragments, however, abrogates activity. When IgG antibody is bound to Protein A-Sepharose, it fails to enhance C3 depletion in H gamma S by Sepharose, indicating that binding of IgG antibody by the Fab region is necessary for enhancement of alternative pathway activity in human serum.