A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism
- 6 March 2007
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (10) , 4188-4193
- https://doi.org/10.1073/pnas.0605864104
Abstract
Functional neuroimaging has undergone spectacular developments in recent years. Paradoxically, its neurobiological bases have remained elusive, resulting in an intense debate around the cellular mechanisms taking place upon activation that could contribute to the signals measured. Taking advantage of a modeling approach, we propose here a coherent neurobiological framework that not only explains several in vitro and in vivo observations but also provides a physiological basis to interpret imaging signals. First, based on a model of compartmentalized energy metabolism, we show that complex kinetics of NADH changes observed in vitro can be accounted for by distinct metabolic responses in two cell populations reminiscent of neurons and astrocytes. Second, extended application of the model to an in vivo situation allowed us to reproduce the evolution of intraparenchymal oxygen levels upon activation as measured experimentally without substantially altering the initial parameter values. Finally, applying the same model to functional neuroimaging in humans, we were able to determine that the early negative component of the blood oxygenation level-dependent response recorded with functional MRI, known as the initial dip, critically depends on the oxidative response of neurons, whereas the late aspects of the signal correspond to a combination of responses from cell types with two distinct metabolic profiles that could be neurons and astrocytes. In summary, our results, obtained with such a modeling approach, support the concept that both neuronal and glial metabolic responses form essential components of neuroimaging signals.Keywords
This publication has 39 references indexed in Scilit:
- Neuronal–Glial Glucose Oxidation and Glutamatergic–GABAergic FunctionJournal of Cerebral Blood Flow & Metabolism, 2006
- Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic GlycolysisScience, 2004
- Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytesJournal Of Neural Transmission-Parkinsons Disease and Dementia Section, 2004
- Coupling of Changes in Cerebral Blood Flow with Neural Activity: What Must Initially Dip Must Come Back UpJournal of Cerebral Blood Flow & Metabolism, 2004
- Modeling the hemodynamic response to brain activationNeuroImage, 2004
- Food for Thought: Challenging the DogmasJournal of Cerebral Blood Flow & Metabolism, 2003
- Modification of the pharmacokinetics of high-dose cyclophosphamide and cisplatin by antiemeticsBone Marrow Transplantation, 1999
- Red and White BrainAnnals of the New York Academy of Sciences, 1997
- Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and PerceptionScience, 1988
- A mathematical model to study short-term regulation of mitochondrial energy transductionBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1985