Interaction of SiO2 with Single-Walled Carbon Nanotubes

Abstract
The effects of coating of a single-walled carbon nanotube (SWNT) with a nonbonded layer of silica are investigated via model system employing fully coordinated silica clusters. The geometric and electronic structures of the [email protected]2 composite system are calculated using periodic density functional (DF) calculations for a range of confining silica coatings. We show that silica can provide a protective bound coating to a single walled nanotube, which, importantly, only weakly perturbs the underlying properties of both components. Detailed analysis of the charge redistribution and changes in electronic structure upon coating the SWNT are performed to support this conclusion. Furthermore, as allowed by our versatile model system, the energetics of rotating a silica “bearing” around a nanotube “spindle” is also calculated to indicate the possibilities for SWNT[email protected]2-based nanomechanical devices.