Mechanosensitive activation of K+channel via phospholipase C-induced depletion of phosphatidylinositol 4,5-bisphosphate in B lymphocytes
- 21 July 2007
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 582 (3) , 977-990
- https://doi.org/10.1113/jphysiol.2007.128413
Abstract
In various types of cells mechanical stimulation of the plasma membrane activates phospholipase C (PLC). However, the regulation of ion channels via mechanosensitive degradation of phosphatidylinositol 4,5-bisphosphate (PIP(2)) is not known yet. The mouse B cells express large conductance background K(+) channels (LK(bg)) that are inhibited by PIP(2). In inside-out patch clamp studies, the application of MgATP (1 mm) also inhibited LK(bg) due to the generation of PIP(2) by phosphoinositide (PI)-kinases. In the presence of MgATP, membrane stretch induced by negative pipette pressure activated LK(bg), which was antagonized by PIP(2) (> 1 microm) or higher concentration of MgATP (5 mm). The inhibition by PIP(2) was partially reversible. However, the application of methyl-beta-cyclodextrin, a cholesterol scavenger disrupting lipid rafts, induced the full recovery of LK(bg) activity and facilitated the activation by stretch. In cell-attached patches, LK(bg) were activated by hypotonic swelling of B cells as well as by negative pressure. The mechano-activation of LK(bg) was blocked by U73122, a PLC inhibitor. Neither actin depolymerization nor the inhibition of lipid phosphatase blocked the mechanical effects. Direct stimulation of PLC by m-3M3FBS or by cross-linking IgM-type B cell receptors activated LK(bg). Western blot analysis and confocal microscopy showed that the hypotonic swelling of WEHI-231 induces tyrosine phosphorylation of PLCgamma2 and PIP(2) hydrolysis of plasma membrane. The time dependence of PIP(2) hydrolysis and LK(bg) activation were similar. The presence of LK(bg) and their stretch sensitivity were also proven in fresh isolated mice splenic B cells. From the above results, we propose a novel mechanism of stretch-dependent ion channel activation, namely, that the degradation of PIP(2) caused by stretch-activated PLC releases LK(bg) from the tonic inhibition by PIP(2).Keywords
This publication has 31 references indexed in Scilit:
- Lymphocyte calcium signaling from membrane to nucleusNature Immunology, 2005
- Potassium Channels, Memory T Cells, and Multiple SclerosisThe Neuroscientist, 2005
- Phospholipase C in Living CellsThe Journal of general physiology, 2005
- Merging complexes: properties of membrane raft assembly during lymphocyte signalingTrends in Immunology, 2005
- Membrane-delimited Regulation of Novel Background K+ Channels by MgATP in Murine Immature B CellsJournal of Biological Chemistry, 2004
- Activation of Syk Protein Tyrosine Kinase in Response to Osmotic Stress Requires Interaction with p21-Activated Protein Kinase Pak2/γ-PAKMolecular and Cellular Biology, 2004
- Lipid Phosphate Phosphatases Regulate Lysophosphatidic Acid Production and Signaling in PlateletsJournal of Biological Chemistry, 2003
- Calcium Mobilization Evoked by Hepatocellular Swelling Is Linked to Activation of Phospholipase CγPublished by Elsevier ,2002
- Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytesCell Calcium, 2001
- Hypotonically Induced Calcium Release from Intracellular Calcium StoresPublished by Elsevier ,1996