The Reionization History at High Redshifts. I. Physical Models and New Constraints from Cosmic Microwave Background Polarization
- 20 September 2003
- journal article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 595 (1) , 1-12
- https://doi.org/10.1086/377337
Abstract
The recent discovery of a high optical depth tau to Thomson scattering from the WMAP data implies that significant reionization took place at redshifts z~15. This discovery has important implications for the sources of reionization, and allows, for the first time, constraints to be placed on physical reionization scenarios out to redshift z~20. Using a new suite of semi-analytic reionization models, we show that the high value of tau requires a surprisingly high efficiency epsilon of the first generation of UV sources for injecting ionizing photons into the intergalactic medium. We find that no simple reionization model can be consistent with the combination of the WMAP result with data from the z10^4K decreased by a factor of ~ 30 between (z~20) and (z~6). We discuss the relevant physical issues to produce either scenario, and argue that both options are viable, and allowed by current data. In detailed models of the reionization history, we find that the evolution of the ionized fractions in the two scenarios have distinctive features that Planck can distinguish at 3 sigma significance. At the high WMAP value for tau, Planck will also be able to provide tight statistical constraints on reionization model parameters, and elucidate much of the physics at the end of the Dark Ages. The sources responsible for the high optical depth discovered by WMAP should be directly detectable out to z~15 by the James Webb Space Telescope.Comment: cosmetic changes to figures; text unchangeKeywords
All Related Versions
This publication has 76 references indexed in Scilit:
- First‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Preliminary Maps and Basic ResultsThe Astrophysical Journal Supplement Series, 2003
- The Formation of the First Star in the UniverseScience, 2002
- The Formation of the First Stars. I. The Primordial Star‐forming CloudThe Astrophysical Journal, 2002
- Evidence for Reionization at [ITAL][CLC]z[/CLC][/ITAL] ∼ 6: Detection of a Gunn-Peterson Trough in a [ITAL][CLC]z[/CLC][/ITAL] = 6.28 QuasarThe Astronomical Journal, 2001
- In the beginning: the first sources of light and the reionization of the universePhysics Reports, 2001
- Non-uniform reionization by galaxies and its effect on the cosmic microwave backgroundMonthly Notices of the Royal Astronomical Society, 2001
- The Role of H2 Molecules in Cosmological Structure FormationPublished by Cambridge University Press (CUP) ,2000
- The Formation and Fragmentation of Primordial Molecular CloudsThe Astrophysical Journal, 2000
- Forming the First Stars in the Universe: The Fragmentation of Primordial GasThe Astrophysical Journal, 1999
- The Photoevaporation of Dwarf Galaxies during ReionizationThe Astrophysical Journal, 1999