Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX–specific quinine-dependent antibodies

Abstract
The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because (1) it immunoprecipitated drug-dependently the former but not the latter glycoprotein complex and (2) the MAIPA assay showed strong rifampicin-dependent antibody binding when anti-GPIb-IX monoclonal antibodies (mAbs) (AK2 and FMC25) but not anti-GPIIb-IIIa mAbs (AP2, SZ21, and SZ22) were used to capture the antigen. The antibody binding site was further localized to the GPIX subunit of the GPIb-IX complex because flow cytometric analysis revealed drug-dependent antibody binding to L cells transfected with human GPIbβ and GPIX complementary DNA (L βIX cells) but not with human GPIb and GPIbβ complementary DNA (L β cells). Finally, in the MAIPA assay, the rifampicin-dependent antibody almost completely cross-blocked the binding of the anti-GPIX mAb (SZ1) to platelets. Similar cross-blocking of SZ1binding to platelets by the quinine-dependent antibodies was also observed. This finding not only confirms that the epitope of the rifampicin-dependent antibody is on GPIX but it is also identical to or located in close proximity to that of the quinine-dependent antibody and SZ1. Further characterization of the epitopes of these antibodies may have important implications for a general understanding of the mechanism of drug-induced thrombocytopenia.