Belief functions and statistical inference

Abstract
The Dempster Shafer theory of belief functions is a method of quantifying uncertainty that generalizes probability theory. We review the theory of belief functions in the context of statistical inference. We mainly focus on a particular belief function based on the likelihood function and its application to problems with partial prior information. We also consider connections to upper and lower probabilities and Bayesian robustness.

This publication has 38 references indexed in Scilit: