Objective Criteria for Partitioning Gaussian-distributed Reference Values into Subgroups

Abstract
Background: The aim of this study was to develop new and useful criteria for partitioning reference values into subgroups applicable to gaussian distributions and to distributions that can be transformed to gaussian distributions. Methods: The proposed criteria relate to percentages of the subgroups outside each of the reference limits of the combined distribution. Critical values suggested as partitioning criteria for these percentages were derived from analytical bias quality specifications for using common reference intervals throughout a geographic area. As alternative partitioning criteria to the actual percentages, these were transformed mathematically to critical distances between the reference limits of the subgroup distributions, to be applied to each pair of reference limits, the upper and the lower, at a time. The new criteria were tested using data on various plasma proteins collected from ∼500 reference individuals, and the outcomes were compared with those given by the currently widely applied and recommended partitioning model of Harris and Boyd, the “Harris-Boyd model”. Results: We suggest 4.1% as the critical minimum percentage outside that would justify partitioning into subgroups, and 3.2% as the critical maximum percentage outside that would justify combining them. Percentages between these two values should be classified as marginal, implying that nonstatistical considerations are required to make the final decision on partitioning. The correlation between the critical percentages and the critical distances was mathematically precise in the new model, whereas this correlation is rather approximate in the Harris-Boyd model because focus on the difference between means in this model makes high precision hard to achieve. The application examples suggested that the new model is more radical than the Harris-Boyd model. Conclusions: New percentage and distance criteria, to be used for partitioning gaussian-distributed data, have been developed. The distance criteria, applied separately to both reference limit pairs of the subgroup distributions, seemed more reliable and correlated more accurately with the critical percentages than the distance criteria of the Harris-Boyd model. As opposed to the Harris-Boyd model, the new model is easily adjustable to new critical values of the percentages, should they need to be changed in the future.

This publication has 15 references indexed in Scilit: