Abstract
The catalytic core of the sunY intron of bacteriophage T4 is separated from its 3' exon by 837 nucleotides, most of which are part of an open reading frame (ORF). Here, we report that transcripts truncated within the sunY ORF self-splice in vitro to a variety of sites in the segment immediately 3' of the core. Recognition of these proximal splice sites is shown to depend on (1) the presence on the intron side of a terminal G, which must not be part of a secondary structure; and (2) the ability of the penultimate intron nucleotide to base-pair with a 3' splice site-binding sequence (3'SSBS) located within the core. The counterpart of the 3'SSBS can be identified in most group I introns. The possible significance of such alternative splicing events for in vivo expression of intron-encoded proteins is discussed.
Keywords