• 1 January 1993
    • journal article
    • review article
    • Vol. 14, 45-60
Abstract
The interaction of lead (Pb) with proteins may represent a fundamental mechanism by which Pb exerts toxicity. In this overview, various factors which influence the interaction of Pb with proteins will be discussed. Pb interacts with enzyme functional groups, and high-affinity metal-binding proteins, such as Pb-binding proteins and metallothioneins, can mediate this Pb-enzyme interaction. Many other factors influence Pb-protein interactions including ligand competition and binding affinities; protein folding and the nature of the metal-binding site; rates of protein synthesis and degradation; and intracellular localization of the ligand and metal. The remainder of this overview will focus on specific examples of important proteins known to be influenced by Pb or which hypothetically may be influenced by Pb. Gaps in knowledge and important research needs are emphasized. Many of the factors discussed play a role in the relative sensitivity of various enzymes in heme biosynthesis to Pb. Disruption of this critical pathway by Pb may result in neuropathologies and accumulation of neurotoxic heme precursors. High-affinity metal-binding proteins have been shown to play a role in mediating Pb inhibition of the octameric Zn-containing enzyme, ALA dehydratase. Knowledge of regional localization in brain and the postnatal ontogeny of the high-affinity metal-binding proteins may be pivotal in understanding Pb neurotoxicity. Other specific examples related to or potentially related to Pb toxicity which are discussed include nucleic acid binding proteins, calmodulin, protein kinase C, and carbonic anhydrase. These proteins will serve as models to understand some basic principles and differences in Pb-protein interactions.

This publication has 0 references indexed in Scilit: