Abstract
Some experimental results on incompressible viscous fluid flow in the gap between two concentric rotating spheres are discussed. The flow field in the spherical gap has been studied qualitatively by flow visualization (photographs) and quantitatively by measurements by the hot-wire technique. For a wide range of Reynolds numbers, the friction torque was measured for several gap widths and a relatively simple method of determining the torque theoretically is given. At higher Reynolds numbers instabilities appear. Their different behaviour for relatively small and large gap widths is demonstrated. For the larger gap widths, the different appearance of the Taylor–Görtler vortices, the reason for their generation, their regimes of existence as well as their influence on the friction torque are thoroughly treated. Detailed information is given on the new effect of the dependence of the wavelength of the vortices on the Reynolds number.