GABAergic control of the ascending input from the median raphe nucleus to the limbic system.

Abstract
The median raphe nucleus (MRN) is the primary source of serotonergic afferents to the limbic system that are generally considered to suppress hippocampal theta oscillations. GABA receptors are expressed in the MRN by serotonergic and nonserotonergic cells, including GABAergic and glutamatergic neurons. This study investigated the mechanisms by which the fluctuating GABA tone in the MRN leads to induction or suppression of hippocampal theta rhythm. We found that MRN application of the GABAA agonist muscimol (0.05–1.0 mM) or GABAB agonist baclofen (0.2 mM) by reverse microdialysis had strong theta promoting effects. The GABAA antagonist bicuculline infused in low concentrations (0.1, 0.2 mM) eliminated theta rhythm. A short period of theta activity of higher than normal frequency preceded hippocampal desynchronization in 46% of rats. Bicuculline in larger concentrations (0.5, 1.0, 2.0 mM) resulted in a biphasic response of an initial short (B antagonist CGP35348 . Our findings suggest that the GABAergic network may have two opposing functions in the MRN: relieving the theta-generators from serotonergic inhibition and regulating the activity of a theta-promoting circuitry by the fluctuating GABA tone. The two mechanisms may be involved in different functions.