Cause for Dark, Chilling-Induced Inactivation of Photosynthetic Oxygen-Evolving System in Cucumber Leaves

Abstract
Effects on oxygen evolution of the storage of detached cucumber (Cucumis sativus) leaves at 0.degree. C in the dark were investigated with thylakoids and oxygen-evolving photosystem II membranes isolated from stored leaves. The cold and dark treatment of leaves selectively inactivated electron transport on the oxidizing side of photosystem II. Photosystem II membranes isolated from treated leaves were largely depleted of two proteins of 20 and 14 kilodaltons, which correspond to the extrinsic 23- and 17-kilodalton proteins of spinach functioning in oxygen evolution. The manganese content of photosystem II membranes was also markedly reduced by the treatment. Thus, the inactivation of oxygen evolution induced by the dark, chilling treatment is ascribed to solubilization of the 20- and 14-kilodalton proteins and extraction of manganese.