Abstract
When some external agency imposes on a fluid large-scale variations of some dynamically passive, conserved, scalar quantity θ like temperature or concentration of solute, turbulent motion of the fluid generates small-scale variations of θ. This paper describes a theoretical investigation of the form of the spectrum of θ at large wave-numbers, taking into account the two effects of convection with the fluid and molecular diffusion with diffusivity k. Hypotheses of the kind made by Kolmogoroff for the small-scale variations of velocity in a turbulent motion at high Reynolds number are assumed to apply also to small-scale variations of θ.Previous contributions to the problem are reviewed. These have established that the spectrum of θ varies as , the result being given by (4.8). The same result is obtained, using essentially the same approximation about the velocity field, from a different kind of analysis in terms of velocity and θ correlations. Finally, the relation between this work and Townsend's model of the small-scale variations of vorticity in a turbulent fluid is discussed.

This publication has 5 references indexed in Scilit: