An empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 1967–93. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity chan... Abstract An empirical model for predicting the maximum wind of landfalling tropical cyclones is developed. The model is based upon the observation that the wind speed decay rate after landfall is proportional to the wind speed. Observations also indicate that the wind speed decays to a small, but nonzero, background wind speed. With these assumptions, the wind speed is determined from a simple two-parameter exponential decay model, which is a function of the wind speed at landfall and the time since landfall. A correction can also be added that accounts for differences between storms that move inland slowly and storms that move inland rapidly. The model parameters are determined from the National Hurricane Center best track intensities of all U.S. landfalling tropical cyclones south of 37°N for the period 1967–93. Three storms that made landfall in Florida prior to 1967 were also included in the sample. Results show that the two-parameter model explains 91% of the variance of the best track intensity chan...