A protein sequence that can encode native structure by disfavoring alternate conformations

Abstract
The linear sequence of amino acids contains all the necessary information for a protein to fold into its unique three-dimensional structure. Native protein sequences are known to accomplish this by promoting the formation of stable, kinetically accessible structures. Here we describe a Pro residue in the center of the third transmembrane helix of the cystic fibrosis transmembrane conductance regulator that promotes folding by a distinct mechanism: disfavoring the formation of a misfolded structure. The generality of this mechanism is supported by genome-wide transmembrane sequence analyses. Furthermore, the results provide an explanation for the increased frequency of Pro residues in transmembrane α-helices. Incorporation by nature of such 'negative folding determinants', aimed at preventing the formation of off-pathway structures, represents an additional mechanism by which folding information is encoded within the evolved sequences of proteins.

This publication has 0 references indexed in Scilit: