Abstract
Histochemical staining, beta-glucuronidase (GUS) activity, or placing roots on agar were methods used to characterize interactions between the pathogenic fungus, Fusarium oxysporum f. sp. lycopersici, and the nonpathogenic biocontrol F. oxysporum strain 70T01 with respect to colonization behaviors, interaction sites, and population densities on tomato roots. Mycelia of strain 70T01, a genetic transformant expressing stable GUS activity, hygromycin B resistance, and effective disease control, were localized in epidermal and cortex cell layers of tomato roots in a discontinuous and uneven pattern. In contrast, mycelia of F. oxysporum f. sp. lycopersici were found in the vascular bundles. Thus, direct interactions between the two fungi likely happen in the root surface cell layers. Colonization density of strain 70T01 was related to the inoculation density but decreased with distance from the inoculation site. Host defense reactions, including increased cell wall thickness or papilla deposits, were adjacent to 70T01 hyphae. Experiments done in soil showed that strain 70T01 densities in roots were highest at inoculation zones and barely detectable for root segments more than 2 cm away from the inoculation sites. F. oxysporum f. sp. lycopersici densities were lowest at 70T01 inoculation zones and highest (>10 times) where strain 70T01 was not directly applied. Newly elongating roots where strain 70T01 did not reach were available for infection by the pathogen. The higher strain 70T01 density was always found when the plants were simultaneously infected by F. oxysporum f. sp. lycopersici, suggesting that F. oxysporum f. sp. lycopersici has as much influence in predisposing the plant to colonization by strain 70T01 as strain 70T01 has on providing disease protection against the pathogen.