Biosynthesis of ε-rhodomycinone from glucose by Streptomyces C5 and comparison with intermediary metabolism of other polyketide-producing streptomycetes

Abstract
The catabolism of glucose by Streptomyces C5, a producer of anthracycline antibiotics, was investigated to determine the pathways that supply precursors for anthracycline biosynthesis. Carbons for the biosynthesis of ε-rhodomycinone, an anthracycline aglycone, from radiolabelled glucose were derived primarily from the Embden–Meyerhof–Parnas pathway, with a minor contribution from the pentose phosphate pathway. Furthermore, the anthracycline-producing strain, Streptomyces C5, as well as Streptomyces aureofaciens and Streptomyces lividans, strains that produce nonanthracycline polyketide antibiotics, displayed enzyme activities indicative of the Embden–Meyerhof–Parnas and pentose phosphate glycolytic pathways. As determined from labelling patterns, Streptomyces C5 apparently has a complete tricarboxylic acid cycle, but does not have a glyoxylate bypass pathway.