Removal of Alkali Vapors by a Fixed Granular-Bed Sorber Using Activated Bauxite as a Sorbent

Abstract
Studies have been conducted to develop a fixed granular-bed sorber for the removal of alkali vapors in a pressurized fluidized-bed combustion (PFBC) combined-cycle system. A laboratory-scale pressurized alkali-vapor sorption test unit was used to characterize activated bauxite, the most effective sorbent identified earlier, for its alkali vapor sorption capability in a gas stream with temperature (≤900°C), pressure (10 atm absolute), and composition closely simulating the actual PFBC flue gas. A scale-up of laboratory tests is being conducted in a 15.2-cm-dia (6-in.-dia) PFBC system to demonstrate the granular-bed sorber concept. The NaCl-vapor sorption chemistry of activated bauxite is described. The extent of alkali-vapor evolution from the activated bauxite bed itself is discussed, along with an evaluation of the significance of its alkali vapor contribution to a downstream gas turbine. Details of the design of a high-temperature/high-pressure alkali sorber system for the demonstration of the sorber are presented.

This publication has 0 references indexed in Scilit: