Suppression of Central Nervous System Sodium Channels by Propofol

Abstract
Background: Previous studies have provided evidence that clinical levels of propofol alter the functions of voltage-dependent sodium channels, thereby inhibiting synaptic release of glutamate. However, most of these experiments were conducted in the presence of sodium-channel activators, which alter channel inactivation. This study electrophysiologically characterized the interactions of propofol with unmodified sodium channels. Methods: Sodium currents were measured using whole-cell patch-clamp recordings of rat brain IIa sodium channels expressed in a stably transfected Chinese hamster ovary cell line. Standard electrophysiologic protocols were used to record sodium currents in the presence or absence of externally applied propofol. Results: Propofol, at concentrations achieved clinically in the brain, significantly altered sodium channel currents by two mechanisms: a voltage-independent block of peak currents and a concentration-dependent shift in steady-state inactivation to hyperpolarized potentials, leading to a voltage dependence of current suppression. The two effects combined to give an apparent concentration yielding a half-maximal inhibitory effect of 10 microM near the threshold potential of action potential firing (about -60 mV). Propofol inhibition was also use-dependent, causing a further block of sodium currents at these anesthetic concentrations. Conclusions: In these experiments with pharmacologically unaltered sodium channels, propofol inhibition of currents occurred at concentrations about eight-fold above clinical plasma levels and thus at brain concentrations reached during clinical anesthesia. Therefore, the results indicate a possible role for sodium-channel suppression in propofol anesthesia.

This publication has 27 references indexed in Scilit: