Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation

Abstract
Transduction of graded synaptic input into trains of all-or-none action potentials (spikes) is a crucial step in neural coding. Hodgkin identified three classes of neurons with qualitatively different analog-to-digital transduction properties. Despite widespread use of this classification scheme, a generalizable explanation of its biophysical basis has not been described. We recorded from spinal sensory neurons representing each class and reproduced their transduction properties in a minimal model. With phase plane and bifurcation analysis, each class of excitability was shown to derive from distinct spike initiating dynamics. Excitability could be converted between all three classes by varying single parameters; moreover, several parameters, when varied one at a time, had functionally equivalent effects on excitability. From this, we conclude that the spike-initiating dynamics associated with each of Hodgkin's classes represent different outcomes in a nonlinear competition between oppositely directed, kinetically mismatched currents. Class 1 excitability occurs through a saddle node on invariant circle bifurcation when net current at perithreshold potentials is inward (depolarizing) at steady state. Class 2 excitability occurs through a Hopf bifurcation when, despite net current being outward (hyperpolarizing) at steady state, spike initiation occurs because inward current activates faster than outward current. Class 3 excitability occurs through a quasi-separatrix crossing when fast-activating inward current overpowers slow-activating outward current during a stimulus transient, although slow-activating outward current dominates during constant stimulation. Experiments confirmed that different classes of spinal lamina I neurons express the subthreshold currents predicted by our simulations and, further, that those currents are necessary for the excitability in each cell class. Thus, our results demonstrate that all three classes of excitability arise from a continuum in the direction and magnitude of subthreshold currents. Through detailed analysis of the spike-initiating process, we have explained a fundamental link between biophysical properties and qualitative differences in how neurons encode sensory input. Information is transmitted through the nervous system in the form of action potentials or spikes. Contrary to popular belief, a spike is not generated instantaneously when membrane potential crosses some preordained threshold. In fact, different neurons employ different rules to determine when and why they spike. These different rules translate into diverse spiking patterns that have been observed experimentally and replicated time and again in computational models. In this study, our aim was not simply to replicate different spiking patterns; instead, we sought to provide deeper insight into the connection between biophysics and neural coding by relating each to the process of spike initiation. We show that Hodgkin's three classes of excitability result from a nonlinear competition between oppositely directed, kinetically mismatched currents; the outcome of that competition is manifested as dynamically distinct spike-initiating mechanisms. Our results highlight the benefits of forward engineering minimal models capable of reproducing phenomena of interest and then dissecting those models in order to identify general explanations of how those phenomena arise. Furthermore, understanding nonlinear dynamical processes such as spike initiation is crucial for definitively explaining how biophysical properties impact neural coding.