IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade.

Abstract
IL-6 mediates growth of some human multiple myeloma (MM) cells and IL-6-dependent cell lines. Although three IL-6 signaling pathways (STAT1, STAT3, and Ras-dependent MAPK cascade) have been reported, cascades mediating IL-6-triggered growth of MM cells and cell lines are not defined. In this study, we therefore characterized IL-6 signaling cascades in MM cell lines, MM patient cells, and IL-6-dependent B9 cells to determine which pathway mediates IL-6-dependent growth. IL-6 induced phosphorylation of JAK kinases and gp130, regardless of the proliferative response of MM cells to this growth factor. Accordingly, we next examined downstream IL-6 signaling via the STAT3, STAT1, and Ras-dependent mitogen-activated protein kinase (MAPK) cascades. IL-6 triggered phosphorylation of STAT1 and/or STAT3 in MM cells independent of their proliferative response to IL-6. In contrast, IL-6 induced phosphorylation of Shc and its association with Sos1, as well as phosphorylation of MAPK, only in MM cells and B9 cells that proliferated in response to IL-6. Moreover, MAPK antisense, but not sense, oligonucleotide inhibited IL-6-induced proliferation of these cells. These data suggest that STAT1 and/or STAT3 activation may occur independently of the proliferative response to IL-6, and that activation of the MAPK cascade is an important distal pathway for IL-6-mediated growth.

This publication has 0 references indexed in Scilit: