Initiation of acellular extrinsic fiber cementum on human teeth

Abstract
The development of acellular extrinsic fiber cementum (AEFC) has never before been studied in human teeth. We have therefore examined the initiation of AEFC in the form of a collagenous fiber fringe and its attachment to the underlying dentinal matrix, in precisely selected, erupting human premolars with roots developed to 50%–60% of their final length. Freshly extracted teeth were prefixed in Karnovsky's fixative, decalcified in EDTA and subdivided into about 10 blocks each, cut from the mesial and distal root surfaces, vertical to and along the root axis. The blocks were postfixed in osmium tetroxide, embedded in Epon and cut for light- and electron-microscopic investigation. Starting at the advancing edge of the root, within a region extending about 1 mm coronal to this edge, fibroblast-like cells were seen closely covering the external root surface. Along the first 100 μm from the root edge, these cells extended cytoplasmic processes and contacted the dentinal collagen fibrils. Between these cells and the dentinal matrix, new collagen fibrils and very short collagen fibers gradually developed. Within the second 100 μm from the root edge, this resulted in the formation of a cell-fiber fringe network. Newly formed fibers of the fringe were directly attached to the non-mineralized matrix containing dentinal collagen fibrils and could be distinguished from the latter by differences in fibril orientation. During the process of dentin mineralization, the transitional zone between the fiber-fringe base and the dentinal matrix, i.e., the future dentino-cemental junction, also mineralized. It is suggested that this fiber fringe is the base of AEFC, which later increases in thickness by fiber extension and subsequent mineralization.