Abstract
A random graph is a collection of n points and n directed arcs: a directed arc goes equiprobably from each point to one of (n – 1) other points. m points are initially ‘infected'. We consider several schemes of epidemic process, e.g. when the infection is delivered according to arc direction. We prove that the probability of infecting all the n points with m = 1 is ∼ e/n, when n → ∞; another result is that m = o(√ n) cannot infect an essential part of the graph (having the size of O(n)). Possible applications of the models to real world phenomena are briefly discussed.

This publication has 5 references indexed in Scilit: