Abstract
The concept of promoter efficiency is introduced as frequency of RNA chain initiation at a given promoter normalized to the intracellular concentration of free (but functional) RNA polymerase. Previous observations from this laboratory on the synthesis of ribosomes and β-galactosidase are used to show that during a nutritional shift-up from succinate minimal to glucose-amino acids medium (3-fold increase in steady-state growth rate) the concentration of free (active) RNA polymerase decreases to one-quarter of the pre-shift value and the promoter efficiencies of the genes for ribosomal RNA and ribosomal proteins increase 9- and 6-fold respectively. This extent of control of ribosomal genes is much greater than expected on the basis of the increase in the rate of ribosome synthesis (3-fold).