Abstract
A linear operator T on a matrix space is said to be unital if T(I) = I. In this note we characterize the unital lineart operators on matrix spaces that preserve the k-numerical radius. Using the results obtained we easily determine the structure of all linear operators on the space of n × n complex matrices that preserve the k-numerical range. This completes the work of Pierce and Watking, who obtained the results for the cases when nn2k.

This publication has 5 references indexed in Scilit: