Properties of Dark Matter Haloes in Clusters, Filaments, Sheets and Voids
Preprint
- 23 November 2006
Abstract
Using a series of high-resolution N-body simulations of the concordance cosmology we investigate how the formation histories, shapes and angular momenta of dark-matter haloes depend on environment. We first present a classification scheme that allows to distinguish between haloes in clusters, filaments, sheets and voids in the large-scale distribution of matter. This method is based on a local-stability criterion for the orbits of test particles and closely relates to the Zel'dovich approximation. Applying this scheme to our simulations we then find that: i) Mass assembly histories and formation redshifts strongly depend on environment for haloes of mass M<M* (haloes of a given mass tend to be older in clusters and younger in voids) and are independent of it for larger masses; ii) Low-mass haloes in clusters are generally less spherical and more oblate than in other regions; iii) Low-mass haloes in clusters have a higher median spin than in filaments and present a more prominent fraction of rapidly spinning objects; we identify recent major mergers as a likely source of this effect. For all these relations, we provide accurate functional fits as a function of halo mass and environment. We also look for correlations between halo-spin directions and the large-scale structures: the strongest effect is seen in sheets where halo spins tend to lie within the plane of symmetry of the mass distribution. Finally, we measure the spatial auto-correlation of spin directions and the cross-correlation between the directions of intrinsic and orbital angular momenta of neighbouring haloes. While the first quantity is always very small, we find that spin-orbit correlations are rather strong especially for low-mass haloes in clusters and high-mass haloes in filaments.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: