A temporal analysis of testosterone‐induced changes in electric organs and electric organ discharges of mormyrid fishes
- 1 October 1989
- journal article
- research article
- Published by Wiley in Journal of Neurobiology
- Vol. 20 (7) , 619-634
- https://doi.org/10.1002/neu.480200703
Abstract
The electric organ discharge (EOD) of several species of mormyrid fishes within the genus Brienomyrus is sexually dimorphic during the breeding season: the duration of the male's EOD is much longer than the duration of the female's (for a review see Hopkins, 1986). The mormyrid used here, Brienomyrus sp., exhibits similar alterations in the duration of the triphasic EOD after treatment with testosterone, as do other members of this genus (for reviews see Bass, 1986a,b). In this experiment, animals were intraperitoneally implanted with pellets of either 11‐ketotestosterone or 17 a‐methyltestosterone, and the time course of the changes in the duration of each of the three phases of the EOD were quantified. Additionally, the time course of changes in the morphology of the electric organ, after testosterone treatment, was also quantified using electron microscopic techniques. The results suggest that the change in the duration of the first phase of the EOD is due exclusively to the change in the thickness of the electrocyte body: this is consistent with a model proposed by Bennett and Grundfest (1961) for the electrogenesis of a triphasic EOD. Changes in the duration of the second and third phases of the EOD are highly correlated with changes in the surface area of the posterior and anterior faces of the electrocyte, respectively. The results support the hypothesis that gonadal steroid hormone‐induced changes in the EOD are due to structural changes in the electrocyte's membranes, and that all of the observed changes in the discharge of this system can be explained by the action of steroid hormones on the peripheral target cells (electrocytes).This publication has 19 references indexed in Scilit:
- Testosterone changes the electric organ discharge and external morphology of the mormyrid fish,Gnathonemus petersii (Mormyriformes)Cellular and Molecular Life Sciences, 1988
- Sexually Dimorphic BehaviorsAnnual Review of Neuroscience, 1988
- Ultrastructural features and hormone‐dependent sex differences of mormyrid electric organsJournal of Comparative Neurology, 1986
- A hormone‐sensitive communication system in an electric fishJournal of Neurobiology, 1986
- Species differences in electric organs of mormyrids: Substrates for species‐typical electric organ discharge waveformsJournal of Comparative Neurology, 1986
- Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishesJournal of Comparative Physiology A, 1985
- Hormonal Control Of Sexual Differentiation: Changes in Electric Organ Discharge WaveformScience, 1983
- Temporal Coding of Species Recognition Signals in An Electric FishScience, 1981
- Seasonal changes in plasma cortisol, testosterone and oestradiol-17β in the plaice, Pleuronectes platessa LGeneral and Comparative Endocrinology, 1977
- The fine structure of electrocytes in weakly electric teleostsJournal of Neurocytology, 1975