Optical control and entanglement of atomic Schroedinger fields

Abstract
We develop a fully quantized model of a Bose-Einstein condensate driven by a far off-resonant pump laser which interacts with a single mode of an optical ring cavity. In the linear regime, the cavity mode exhibits spontaneous exponential gain correlated with the appearance of two atomic field side-modes. These side-modes and the cavity field are generated in a highly entangled state, characterized by thermal intensity fluctuations in the individual modes, but with two-mode correlation functions which violate certain classical inequalities. By injecting an initial coherent field into the optical cavity one can significantly decrease the intensity fluctuations at the expense of reducing the correlations, thus allowing for optical control over the quantum statistical properties of matter waves.

This publication has 0 references indexed in Scilit: