Abstract
Abstract— Photogeotropic equilibrium angles were measured for Phycomyces blakesleeanus wild type firstly by means of dichromatic fluence rate response curves using simultaneous irradiation with near threshold 450 nm reference light (constant at 1.2 × 10−8 W m−2) and variable fluence rates of test light (498–630 nm) from the same side. These curves showed minima for test light fluence rates that were close to the photogeotropic threshold for these wavelengths. Secondly, the time course of this inhibitory effect was studied with both the inductive reference 450 nm light (2 × 107 W m−2) and the test light (606 or 450 nm) given as light pulses of 2 s duration (2 s light/48 s dark periods for 6 h). The dark period between the onset of the inductive reference light and test light pulses was varied between 0 and 48 s. No inhibitory effects were observed for simultaneous pulses; however, inhibitory effects were demonstrated for delay times of 2 s and 20 s for 606 nm as well as 450 nm test light. If the test light pulses were given immediately before the inductive reference light, only 606 nm test light was effective in producing a significant inhibitory effect.The results are discussed with regard to a multichromophoric photoreceptor system and to the wavelength dependence of the effects observed. The data and conclusions favor a photoreceptor system with at least two separate chromophoric absorptions of the blue light receptor type, one acting positively, the other acting inhibitorily, and at least one other photoreceptor of presumably minor influence.