Abstract
Three-dimensional numerical solutions are obtained describing convection with a square lattice in a layer heated from below with no-slip top and bottom boundaries. The limit of infinite Prandtl number and a linear dependence of the viscosity on temperature are assumed. The stability of the three-dimensional solutions with respect to disturbances fitting the square lattice is analysed. It is shown that convection in the form of two-dimensional rolls is stable for low variations of viscosity, while square-pattern convection becomes stable when the viscosity contrast between upper and lower parts of the fluid layer is sufficiently strong. The theoretical results are in qualitative agreement with experimental observations.