An Optimal Order Process for Solving Finite Element Equations

Abstract
A k-level iterative procedure for solving the algebraic equations which arise from the finite element approximation of elliptic boundary value problems is presented and analyzed. The work estimate for this procedure is proportional to the number of unknowns, an optimal order result. General geometry is permitted for the underlying domain, but the shape plays a role in the rate of convergence through elliptic regularity. Finally, a short discussion of the use of this method for parabolic problems is presented.