Abstract
The in vitro toxicity of multiple hydrophobic compounds was the focus of this study. A mitochondrial respiratory assay, sensitive to perturbations caused by hydrophobic chemicals, was utilized to measure the effects of individual aromatic hydrocarbon pollutants and their mixtures on mitochondrial respiratory function. Benzene, naphthalene, acenaphthene, and 1-chloronaphthalene, common industrial solvents shown to interact additively in vivo, were evaluated using this in vitro assay system. Mitochondrial respiration was inhibited 50% (EC50) by 525 ppm (6.7 mM) benzene, 15 ppm (117 μM) naphthalene, 3.9 ppm (25.5 μM) acenaphthene, or 3.8 ppm (23.4 μM) 1-chloronaphthalene. NADH:O2 oxidoreductase (NADH → O2), NADH: ubiquinone oxidoreductase, and ubiquinol:O2 oxidoreductase activities were inhibited by all four compounds, whereas succinate:O2 oxidoreductase, cytochrome c oxidase, and duroquinol: O2 oxidoreductase activities were not inhibited. Inhibition of mitochondrial respiration occurred at the level of ubiquinone (coenzyme Q10) for all four aromatic hydrocarbons. The ultraviolet absorbance spectrum of isolated Q10 was also altered by naphthalene, acenaphthene, or 1-chloronaphthalene, suggesting a specific interaction between that component of the respiratory chain and these aromatic hydrocarbons. Inhibition by a mixture of 2, 3, or 4 of the compounds tested was additive, reflecting a summation effect of each compound present in the mixture. This additive nature is consistent with previously reported effects of these compounds in vivo and with compounds having similar modes of action. The similar mode of action in vitro is a specific interaction with coenzyme Q10, not a generalized membrane perturbation as speculated to occur in vivo, and is the likely mechanism for the observed additive toxicity.

This publication has 19 references indexed in Scilit: