Specificity of bacteriophage Mu excision

Abstract
To study the excision of bacteriophage Mu at the DNA sequence level, the Mu-derived phage λplacMu3 was transposed to the transcribed but non-translated leader region of a plasmid-borne tetracycline (tet) resistance gene. Revertants (excision products) were then selected by Tet+ restoration of Tet+ and characterized. Of 21 independent Tet+ revertants, 17 contained simple deletions of most or all of λplacMu3, while the other four contained more complex rearrangements in which one end of λplacMu3 had been transposed, and most of the prophage had been deleted. The deletion endpoints were found in short direct repeats in each of the complex rearrangements and in 11 of the 17 simple deletion excisants. The results suggest models of slipped mispairing of template and nascent DNA strands facilitated by proteins of the Mu transposition machinery.